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Seepage consolidation due to a rigid cylinder rolling over the surface of an elastic saturated porous half-space is considered. 
The dependence of the moment of rolling friction on the roller velocity is found. The standard consolidation model is modified 
to allow for the two-phase nature of the discharge zone. © 1999 Elsevier Science Ltd. All fights reserved. 

Although there is an extensive literature on contact problems of the theory of elasticity and viscoelasticity 
(see [1, 2], for example), very little research has been done on problems of saturated porous media 
which have a similar formulation in the scheme of seepage consolidation. These are, however, interesting 
in both mathematical and mechanical terms. On the one hand, the analogy with an abstract viscoelastic 
material is not so close that known methods can be used directly: special methods need to be devised. 
On the other, the nature of the subject gives rise to effects which do not appear at all in viscoelasticity 
theory. These include, for instance, the appearance of two-phase zones in the initial totally saturated 
porous material [3]. 

The same applies in full measure to the problem of the stress-strain state of a half-space under the 
action of a rigid cylinder rolling freely over its surface. The conventional problem here is to compute 
the moment of rolling friction. We know [4] that, apart from Reynolds' universal mechanism of friction 
[5], connected with the relative slip of the touching surfaces due to their deformation, the moment of 
friction also owes its appearance to the viscous properties of the base material. In the case of a porous 
medium, the latter are determined by the seepage return flow of fluid and, as a rule, the corresponding 
viscous mechanism of friction is more important than the Reynolds mechanism (see Section 6). 

Sections 1--6 deal in detail with the viscous mechanism of friction in the case where the standard linear 
model of seepage consolidation is used to describe strains of the porous base. Although it gives a fairly 
accurate description of the force parameters of the process, the model has the drawback that it does 
not take into account the two-phase nature (liquid plus gas) of the discharge zone behind the roller. 
The corresponding refined model and the accompanying calculations are given in Section 7. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Let an infinitely long roller of radius R move from right to left with velocity V over the surface of a 
saturated porous half-space. 

Seepage consolidation of the half-space can be described in a moving system of coordinates associated 
with the roller by the equations [6, 7] 

30 3p =0  (1.1) 

l.t y 
.30 3p 

+(7~+l.t)~y - ~  = 0 (1.2) 

v - = o (1 .3)  
bx 

Here u~, uy are the displacements, p is the pressure of the fluid, ~. and ~t are the Lam6 coefficients of 
the elastic porous matrix, 0 --- div u is the volume deformation of the medium and k is the seepage 
coefficient, determined by the permeability k0 of the porous medium and the viscosity ~ of the fluid 
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Fig. l. 

which saturates it (k = k0/kt0). The compressibility of the grains of the skeleton and fluid has been 
neglected in Eq. (1.3). In this case the volume macro-deformations (the first term in (1.3)) are associated 
with repacking of the grains and are uniquely defined by the change of pore volume due to the fluid 
being squeezed out of there (the second term in (1.3)). The effective stresses [6] are linearly related 
to the strains 

~ = = L O + 2 ~ t - ~ - ,  Oyy=~,O+2~-~,  ~xy ~3y + ~x J (1.4) 

With the usual assumption of small strains, the boundary conditions are specified on the line y = O. 
They are such that 

y=0 ;  x > a + ,  x < - a _ :  Oyy=Oxy=p=0  (1.5) 

outside the contact area, and 

y=0;-a_<x<a+: ~y=0, Ou r 
~x =_XR, (~xy. = 0 (1.6) 

inside it. 
The first condition of (1.6) implies that the roller is impermeable to fluid and the second corresponds 

to equal normal displacements in the contact zone. The other boundary relation will describe the 
conditions of friction in the contact area. The last equation in (1.6) corresponds to the limiting case of 
a smooth roller with zero coefficient of friction between it and the material of the porous matrix 
[2, p. 280]. On the one hand, the use of this condition enables us to examine the mechanism of viscous 
friction in "pure" form: the Reynolds mechanism does not operate for a smooth roller, for which roiling 
friction is associated only with the viscous properties of the base. On the other hand, in contact rolling 
problems as a rule, the tangential forces are considerably less than the normal forces (by an order of 
magnitude [2]), which means that this condition is a poor approximation even in the general case. 

It will be more convenient if we move the origin of coordinates to the centre of the segment 
(--a_, a+) and normalize the spatial coordinates on a = (a+ + a_)/2 while keeping the same notation 
as before. The contact area in the z = x + iy plane then corresponds to the segment (-1, 1). We will 

quantity a / R ,  and the stresses and pressure to 2pa/R, again also normalize the displacements to the 2 
without any change of notation. 

We will introduce three new functions to replace the displacements and pressure. The function 

f(z)=(~ OUy~+i(O-2P~Ox) \r ) (1.7) 

is analytic, while the other two, 0 and ~ -- 2Ux -yRef, satisfy the equations 

2 20 =2~0 (1.8) s =ao, a; 

The dimensionless parameters r and s are defined by the relations 
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aV 
~, + 2~t" 2k(L + 2~t) 

In terms of the functions f, 4, 0 the boundary conditions (1.5) and (1.6) become 

y=0, Ix l> l :  0=r x x, rlmf=O (1.9) 

y=O, Ix l< l :  rRef=2(x-A); A=a--a+2a (1.10) 

The constantA in (1.10), arising from the asymmetric position of the contact area relative to the centre 
of the roller, will be defined below. 

In addition to 0 and 4, we shall consider the linear combination 4 - O/s which, according to (1.8), is 
a harmonic function. We will denote the analytic function whose imaginary part it is by h(z). 

Now consider the extra conditions imposed on the required functions. Obviously 0 , land dh/dz must 
vanish at infinity. It will become clear that h satisfies an even stronger regularity condition: both the 
function h itself and dh/dz tend to zero as z ~ oo. The conditions of continuity of strains require continuity 
of z = --. 1 at the singular points 0, f and V 4. It should be emphasized that the derivatives of h and 0 
can (and in fact do) separately have integrable singularities at z = - 1; only their linear combination 
has to be continuously differentiable. 

We have thus reduced the initial problem (1.1), (1.6) to problem (1.7), (1.8) of simultaneously finding 
functions 0, 4, f and the value A from boundary conditions (1.9) and (1.10). The size of the contact 
area a plays an implicit role in the formulation of the problem. We normally know Q, the pressure on 
the base per unit length of the roller, rather than a, which is computed after solving problem (1.7)-(1.10) 
by integrating the normal stressps over the contact area. The latter is the difference between the effective 
normal stress Pc = ory transmitted over the porous matrix and the pressure pw = p of the fluid 

P.= P.-Pw, P w ( x ) = l ( O - I m f  l , 
z \ r lly=0 

The corresponding integrals 

1 

1¢_0_ q 
pc(x)= 2t, r  x)ly=o 

q = qw -qc  = -~Ps(X) dx, ra = ~(x-A)ps(x)dx (1.11) 
- I  - I  

determine [1, 4] the force Q and moment of rolling friction M per unit length of the roller 

2 

Q = - ~ - q ( s , r ) ,  M =  2laa3 m(s,r) (1.12) 
R 

2. SOLUTION 

The problem is split into two. We first find 0 and 4 independently o f fandA by solving Eqs (1.8) with 
the first two boundary conditions in (1.9) and (1.10). We then determine the right-hand side in the last 
of conditions (1.9) and thereby complete the statement of the problem of finding f a n d  A. 

We will give a brief description of the solution of these problems, referring to the qualitative properties 
of the required functions when necessary. The proof will be given in Section 3. 

It is better to reduce the problem of finding 0 and 4 to an integral equation over the part of the 
boundaryy = 0, Ixl > 1 relative tog(x) = (aO/dy)(x, 0). To do so, using the first relations in (1.9) and 
(1.10), we express 0 and Imh in terms ofg by the formulae 

I m h = _  l.~ I+**g(x')lnlz_x'ldx ' 
f f .S . .~  

0 = _ 1  jg(x,)eS(X_ x )Ko( s I z - x" I)dx' 

(2.1) 
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where K0 is the MacDonald function. Then, taking into account the continuous differentiability of 
and using the second pair of boundary conditions (1.9) and (1.10), we obtain the required integral 
equation in the form 

S K ( s ( x -  x'))g(x')dx" = - 2 r  ~ K(s(x - x))dx', I x I > 1 
Ix ' l  > i  Ix'l <1 

K(x; r) = eXKo(I x I) - r ~ ( l n  I x I +eX K0 (I x I)) 

(2.2) 

Its kernel K(x) has a logarithmic singularity at zero and decays at infinity. Equation (2.2) is solved 
by the collocation method with multiplicative separation of the singularities g. The latter have the form 

(2.3) 

g=O(IxT-11-~) ,  x-->+-I 

g = O(x - ~ )  x --> +**; g = O(x -2) x - >  --** 

By separating the singularities we can obtain acceptable results even on fairly coarse grids. 
Having foundg, the values of Imh and 0 on the boundaryy = 0 which are needed later are calculated 

by simply integrating (2.1). Incidentally, there is no need to do this for x > 1. It can be shown (see 
Section 3) that 

O(x,0) = ~(x,0) = Imh(x,0) = 0, x > 1 (2.4) 

This is equivalent to the fact that, as well as %y and Oxy, axx vanishes on the free surface behind the 
roller. This can be understood in physical terms: there are no mechanisms for the contraction or extension 
of the surface layer behind the roller in the x direction. 

We now consider the problem of findingfandA when the function 0(x, 0) is known. This is Signorini's 
problem with a known solution [8]. The solvability condition gives 

A= 1 ?0(x,0)dx 
(2.5) 

2r~ ~ ~ x  2 -1  

and the required function is found from the formula 

~Z2-1"r  1 0(x',0) dx' 
f = 2 z -  2~z2 - i - 2A (2.6) 

~r  ..** ~ J xO _ Z 

taking the positive branch of ~/(z 2 - 1) on the segment (1, oo). Note that since the function 0(x, 0) is 
bounded at x = -1 and decreases rapidly at infinity 

0(x,0) = O(I x I-Y2), x ~ --~ (2.7) 

the integrals in (2.5) and (2.6) are defined. 

3. QUALITATIVE ANALYSIS IF THE PROBLEM. THE B E H A V I O U R  OF 
THE SOLUTION AT INFINITY 

In the qualitative analysis of problem (1.8)-(1.10), we consider the following auxiliary problem: Eqs 
(1.8) at s = I with boundary conditions 

y = 0 :  ~y=0 ,  -r . . . .  0x 8(x) ( I m h = ~ - 0 )  (3.1) 

where the Dirac function 8 describes the normal point load on the porous base matrix. This solution 
is denoted by a zero subscript. The solution of the initial problem 0, h is represented in terms of 00, h0 
and the effective normal stresses Pc on the contact area as follows: 

I I 

O = - 2 s l p c ( x ' ) O o ( s ( z - x ' ) ) d x ' ,  h = - E ~ p c ( x ' ) h o ( s ( z - x ' ) ) d x '  (3.2) 
-1 -1 
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The auxiliary problem can be solved formally by using a Fourier transformation with respect tox. In 
particular, for values 00 on the boundary we obtain 

Z~._** ~, l - r )  
(3.3) 

b(w) = ~ -  1+ w - 1 (3.4) 
1 - r  

The square root in (3.4) is defined in the complex plane w = u + it) with a non-negative real 
part on the imaginary axis. This condition will be satisfied if w is cut on the segment (0, 2) and the 
branch of the root which is greater than zero on the interval (2, oo) is chosen. Then (3.3) will take 
the form 

ioo 
r 5(x)+I..~ ~eWXb(w)dw 

0 o (x, O) = - 1 - r znt  - i -  

The function b(w)  has no singularities in the left half-plane and tends to zero like w -1 as w ~ oo. By 
Jordan's lemma [9] it follows that 00(x, 0) = 0 for x > 0. Relation (2.4) is an obvious consequence of 
that fact. 

Similarly, for negative x, we can replace integration over the imaginary axis by integration over the 
cut (0, 2). As a result we obtain 

r 22 e 24T2-u-  du 
Oo( ,o) = e ' ( x ) ,  E(x) = T !  1- 2,-0--= x < o (3.5) 

There are some properties of the function E(x)  that should be noted. Together with all its derivatives, 
it increases monotonely. The way in which they behave at infinity depends on the contribution to the 
integral (3.5) from the left-hand end, so that 

E ~  E_l l x l  - ~ ,  E_l = r 2 ~ l ~ ,  x--->.o (3.6) 

and this relation can be differentiated any number of times. The values at zero are found by direct 
integration of (3.5) 

r 2 r 2 
= , E ' ( 0 ) = E  I = -  E(0)=E 0 1 - r  2(1-r)  2 . . . .  

ThUS on the boundaryy -- 0 we have 

0 o ( x , 0 ) = -  r 8(x)+~0 x > 0  
1 - r  [E ~, x < 0  

From this and (3.1) we find in succession the boundary values of ~ and imaginary part h0. The function 
ho(z) is recovered in the entire half-plane from the values of the axes of the imaginary part on the 
boundary by the Schwarz integral 

r 1 ~ ( 1  1 d x '  
= - - + - -  E - E '  (x' )  

h° X(1- r)z x_**kr I x ' - z  

The function is expanded in series in powers ofz -1/2 at an infinitely distant point, the principal term of 
the series being determined by the nature of the decay of E(x)  at infinity 

ho(z) = - E - f f - l z  -½ + O(z -l ), z ~ .o (3.7) 

A similar relation is obtained for 00 from the representation 

1 7 ..... ye (x-x') .... 
Oo(z) = -- J UotX ,u),-"7-"~,~i 0 z -x" l)dx' 

~ - ~  I z - - X  I 
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an analogue of the Schwarz integral. 
The principal term of the respective series is determined by the value E 0 -  r/(1 - r) = - r of the integral 

over the boundary of 00(x, 0). Using the well-known asymptotic form at infinity of the modified Bessel 
function K1, we find 

_ r e_OZt_x) y I z I---> 00 ( 3 . 8 )  
00(z)~ 2 ~  I zi ~ '  

By virtue of (3.2), the behaviour (3.7) and (3.8) of the functions 00 and h0 at infinity applies to 0 and 
h also. All that is needed is to replace 00, h0 and z in (3.7) and (3.8) by O/(2Sqc), h/(2Sqc) and zs, respectively. 

As for the function f, it follows from (2.5) and (2.6) that it can be represented as z ~ ~, apart from 
terms of order z -3, in the form 

f(z)=_. l_!) '  O(x',O) x'ax' 
Z lCr-**~x'2-1 x ' - z  

and thus decreases as z -1 for large z. Since 0 and h vanish at infinity, the coefficient of the respective 
terms is numerically equal to the load transmitted to the base by the roller, that is 

~ 1 ~l  0 ( x , 0 )  _ _  
f ~ 2 q ,  q = - - + -  j ~ x a x  (3.9) 

~z 2 r._,. ~/x 2 _ 1 

The way in which the stresses a, the pressurep and the associated seepage flow Vp change at infinity 
can be found from (3.7)-(3.9). 

The entire half-space can be split into two regions. The first is the boundary layer of discharge next 
to the boundary behind the contact area (the dashed region in Fig. 1). Its depth varies as the square 
root of the distance from the contact area. 

The second region is the rest of the half-plane, in which h and 0 are much smaller than f, and everything 
depends on the behaviour (3.9) of the latter. The tensor a ° = a - p 8  ~ of total stresses is the same as 
in the Boussinesq solution [1] of point loading on an elastic half-space. Its principal axes are the axes 
of the polar system of coordinates p = Izl, ¢ = argz, where 

fl0p 2q., sin t~ 0 
= - - ,  f p ¢ = f f ~ = 0  

xp 

For the effective stresses we have 

Gpp = - - G ~  = - - p  = 
qs sin t~ 

np 

so that, in some sense, the load at infinity is distributed equally between the fluid and the porous matrix. 
The direction of the seepage flow, determined by the pressure gradient, is from the contact area to the 
free surface. The fluid moves over a family of semi-circles and is extruded onto the surface in front of 
the roller (x < 0), reaching the discharge region behind it (x > 0). 

Another part of the fluid arrives from the surface into the discharge region, inside which, in boundary- 
layer coordinates p, ~ = ~/(ps), we have 

p = - -  = - exp - 
2r 

It is clear from physical considerations that qc > 0 and, therefore, the pressure in the discharge region 
1 is negative; it decreases as ~_ increases from zero on the surfaceto its minimum value - - p -  at the centre 

of the discharge region at <~ = 1 and rapidly tends to zero as ¢ increases further. The fluid moves away 
from the surface and from within the half-space towards the centre of the discharge region, the flow 

3/2 2 from the surface, of order p- , being asymptotically greater than the flow qs/nP from within. The arrows 
in Fig. 1 indicate the overall pattern of motion of the fluid. 

As before, the principal axes for the stresses in the discharge region are p and ~p (or, equivalently 
here, x andy) and %p = (1 - 2r)p, a ~  =p .  
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4. A RAPIDLY MOVING R O L L E R  

The principal term of the asymptotic representation of the solution as s ~ oo 

0~0 ,  h~0 ,  A~0,  f ~  2(z-~z2 -1)  (4.1) 

does not involve the volume deformation 0 of the porous medium. This is understandable. If the roller 
is moving rapidly, the fluid does not have time to filter through and the porous base effectively becomes 
incompressible. 

Relations (4.1) and (1.11) indicate that the contact area and the stresses on it are symmetric relative 
to the centre of the roller, the moment of rolling friction is zero, and the entire load at the contact 
between the roller and the porous base is absorbed by the fluid 

q - q w ~ ~ 1 2 ,  q c ~ m ~ O  

TO find out how m(s) andA(s) decrease as s ---> oo we must find the next terms of the asymptotic series. 
Apart from higher-order small terms, they are 

0 = s-~O°(x, ys~), h = s-lh °, f = 2(z - ~ z  2 - 1) + s - i f  ° 

(4.2) 

Pc" = s-~pOc(x), A = s-IA O, m = s-lm 0 

We should point out that the change of 0 is of boundary-layer character. The contribution of 0 to 
the stresses and strains is small (s -I/2 compared with unity). The corresponding term is significant only 
for seepage flow near the contact area and in the discharge region, where its contribution is of the same 
order (O(1)) as in the principal term found from (4.1), "correcting" the discrepancy between the latter 
and boundary condition (1.6) with respect to the seepage flow. Without dwelling on the determination 

0 0 of 0 ,  we shall confine ourselves to findingfl and h .  This will be enough for us to be able to compute 
A ° and m °. 

From (3.2) and (3.7) we have 

I 0 , , hO(x)=2. f Pc(x  
V~'-~ 4 z - x "  

It follows that the real and imaginary parts of h ° are equal to zero on the segments (-0% -1) and 
(1, oo), respectively. On (-1, 1), according to (1.10), the real part dh°/dz is constant and equal to -r. 
Thus, we find dh°/'dz by solving a mixed boundary-value problem for a function which is analytic in the 
upper half-plane and vanishes at infinity under the boundary conditions 

y = 0  R e d h ° = - 2 r ,  Ix l< l ;  R e d h ° = 0 ,  x < - l ;  Im dh° =0, x > l  
dz dz dz 

Since h ° is bounded, this problem is uniquely solvable and has a solution of the form 

dh ° r ( l n  z ~ / ~ - l - ~ +  2 ~  

The real branches of the root and logarithm on the positive semi-axis are taken here. 
It follows from boundary conditions (1.9) and (1.10) that the imaginary part f0 coincides with the 

imaginary part (1, oo) on (-0% -1) and dh°/dz, and the real part f0 is equal to (-1, 1) on -2A °. The 
difference f l  = jc0 _ dhO/dz is therefore given by 

y = 0 :  I m f l = 0 ,  Ix l>l ;  R e f l = 2 ( r - A ° ) ,  I x l < l  

Sincef ° is continuous at z = 1, the functionf 1 will have the same singularity at that point as --dh°/dz. More- 
over, it will be continuous at z = -1 and vanish at infinity. A ° andfl are uniquely defined by these conditions 

A ° = r  , = 1 
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after which m ° is computed by integrating Imfl  over the contact area (-1, 1). 
As a result we obtain m ° = ~r/2 and, finally, 

x - 2  ~ r  
q - - ~ ,  A = r  ~s , m=~s , s-.~o, (4.3) 

In dimensional variables 

a= Q~, M-_ 2kgQ 
x l . t  v ' 

V--*** 

As expected, the shear modulus ~t, and not L, appears in the final formulae. 
The asymptotic behaviour of the solution is in fact more complex than shown by formulae (4.2). Near 

the ends of the segment (-1, 1) the function 0 has internal exponential boundary layers. Taking these 
into account has no influence on the required integral characteristics of the solution, affecting the 
behaviour of h ° = f0 in onlya small neighbourhood of the point z = -1. The weak logarithmic singularity 
(instead of continuity) o f f '  at z = -1 is a consequence of this fact. 

5. A SLOWLY MOVING ROLLER 

For a roller at rest (s = 0) the pressurep is identically equal to zero, and the initial problem (1.1)-(1.6) 
becomes the classical contact problem [1] of the theory of elasticity. Its solution in terms of functions 
0, ~, f has the form 

I m f = R ,  O = r R , - ~ =  l - y  R, - ~ - r Y ~ x ,  R= 2Im(z -  z2~-l) (5.1) 

As in the case of a fast-moving roller, the contact area and stresses on it are symmetric about the 
centre of the roller and the friction moment is equal to zero. However, the load at the contact is borne 
by the porous matrix rather than the fluid 

1 - r  1 - r  
Ps=Pc= 2 R(x, 0), q=qc=--~--x,  qw=m=O (5.2) 

The behaviour of the friction moment m(s) and of the asymmetryA(s) of the contact area for small 
s is of interest. We will compute the value of A, by finding the function 0(z) in the interval (--oo, -1). 
For small s, by virtue of (3.2) and the first relation in (5.2), in the principal term we have 

1 

0(x, 0) = -s(l - r)~ R(x', O)E'(s(x-x'))dx', x < -1 (5.3) 
-1 

Using representation (3.5) for E, we reduce (5.3) to the form 

2 1 
O(x, O)=2sr2(l-r) s duX f(u)~ ~[1-x'2e-'W" dx'du= 

0 -1 

2 
= sr2(l - r)S eS~f(u)du; f(-u) = ~ -  u) 

0 1 - 2r(1 - r)u (5.4) 

It is valid to replace the exponential in the inner integral by one for small s since ux' is bounded. 
It remains to use relation (2.5) for A. Making the substitution (5.4) and changing the Order of 

integration, we obtain 

2 -1 
A= sr(1-r) I f(u) I es= 

2n o --** "qx 2 - 1 

The inner integral is calculated explicitly [10, p. 323] and is equal to Ko(su). Therefore, for small s, 
it is equal to -(y + In(us/2)), where y is Euler's constant. The final expression forA is thus 
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A "  ...sr . ( l n l+A ,~ ,  s-->O; (5.5) 
4 t i - r )  k s ) 

A, =2(1 - r )2~  f(u~ln2-7)du 
o 

As r varies from zero to 1/2, Al ( r )  decreases from 21n2 to 21n2 - 7 - 1. The intermediate values of AI 
can be given here 

r 0 0.1 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
A 1 x 103 309 238 156 1 I1 61 7 -52 -118 -191 

The friction moment m behaves similarly. Omitting the calculations, we give the final result 

nrs ( 1 "~ 5 
m= 8 ~lns+A2J '  A 2 = A I + 4  ' $"¢0 (5.6) 

6. ANALYSIS OF THE RESULTS 

We have seen from the preceding sections that in analysing the relations between q and rn and the 
dimensionless velocity of the roller s, it is better to normalize the total load and friction moment as 
follows 

~-- l - - ~ q  E~= r 

The way in which ~(s) and nq (s) behave at zero and at infinity is independent of r. Moreover, it turns 
out that ~, nq for different r are close to one another over the entire range of variation of s. This is 
illustrated in Fig. 2, which shows the limiting dependences of ~ and n~ on s at r = 0 (the solid curves) 
and r = 0.5 (the dashed curves). The curves for 0 < r < 0.5 lie in between these. 

The variable q appears in formula (1.12), which relates the length a of the contact area to the applied 
load Q. The fact that q is a function of s shows that a depends on the velocity of the roller V as well as 
the load Q. However, the relation between a and Vis weak and can often be neglected. In fact, q increases 
only slightly, from (1 - r)n/2 to x/2, as V increases from zero to infinity. Taking its average value, we 
obtain 

QR (6.1) 
a =  n~t(1 - r /2)  

With a defined in this way, the relative error is never more than 22%, and typically r - 0.3-10%. 
The dependence nq (s) is, essentially, the dependence of the friction moment on the velocity with the 

B.5 

, I '  
/B-t 

t~ 

'X \ 
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0.1 

r =£," 

i 
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~lo-z [0 "¢ 1 10 $ 

Fig. 2. Fig. 3. 
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other parameters fixed. Figure 2 shows that the relation is non-monotone. The rolling friction is a 
maximum at the characteristic velocity 

V. =2k(Z + 21.t)l a (6.2) 

The friction disappears as the velocity increases to infinity or decreases to zero. This is a general feature 
of this mechanism [1, 2, 4]. 

The asymmetry of the contact area A(s) behaves in the same way as the velocity changes. This can 
be seen from Fig. 3, which shows A/r as a function of s for different r. The asymptotic forms obtained 
for r = 0.3 in Section 5 and 6 are represented by the dashed lines. Even the maximum possible value 
of A(s; r) at r = 0.5, s = 0.56, is very small, at only 0.088. 

We will compare the values for the viscous and Reynolds mechanisms, neglecting their mutual 
influence for simplicity. Consider the dimensionless coefficient of rolling friction F = M/(arQ). For fixed 
r, F depends only on the dimensionless velocity of the roller s for the viscous mechanism, but it depends 
on the coefficient of sliding friction [2] for the Reynolds mechanism. In both cases F reaches its maximum 
at intermediate values of the respective parameter. This maximum (Fig. 2) is about 0.2 for the viscous 
mechanism, and [2, p. 286] 1.5 x 10 -3 for the Reynolds mechanism, a difference of two orders of 
magnitude. In the general case of saturated porous media, therefore, the viscous mechanism predomin- 
ates over the Reynolds mechanism. 

The asymptotic analysis of the solution in Sections 4 and 5 has shown that as the dimensionless velocity 
s increases from zero to infinity, the effective stresses Pc(X) on the contact area decrease in absolute 
magnitude from (1 - r)~/(1 - x 2) to zero, and the pressure p,(x) of the fluid increases from zero to 

2 4(1 - x  ). The solid lines in Fig. 4 give some idea of how these functions change for intermediate values 
of s. The calculations were carried out for r = 0.3 for different values of s. 
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It is interesting to note the segment of negative pressure at the back of the contact area. This is 
consistent with what happened in the discharge region in Section 3. The region of negative pressures, 
which starts at the contact area, extends along the free surface to infinity. The boundary of the region 
is indicated by the solid lines in Fig. 5. Here too the calculations were carried out for r = 0.3 for different 
values of s. As s increases the boundary approaches the free surface. Simultaneously the region of 
negative pressure on the contact area contracts towards its end. 

The presence of a region of negative pressures is an interesting feature of the problem (though not 
at all rare in the theory of seepage consolidation [3]). We recall that the pressure is measured relative 
to atmospheric pressure. In seepage theory it is usual to attribute any fall in pressure additional to 
atmospheric pressure in regions near the free surface to the fact that their pore space is occupied by 
a two-phase medium (water plus air) [11, 12]. This is not taken into account in the classical model of 
seepage consolidation used in this study. An adequate description of the processes in the discharge 
region would require an appropriate refinement of that model. 

7. R E F I N E M E N T  OF THE MODEL 

One generalization of the model which allows for the above fact is given in [3]. Using that 
generalization, we represent the equation of mass balance of the fluid (1.3) in a form which is valid in 
the region of both total and partial saturation 

,,Vp =0 (7.1) 

Here S is the water-saturation, m is the porosity and ×(p) is the phase permeability with respect to the 
fluid of the under-saturated porous medium. In the region of total saturation S = 1, × = 1 and (7.1) 
becomes the same as (1.3). In the case of a coarse-grained medium or for large external loads, we can 
use the limit dependences of S and × on p 

=S ~ H(p) (7.2) 

where H is the Heaviside function, and the inclusion denotes that S belongs to the graph of the 
corresponding multivalued function. These assumptions enable us to neglect the influence of the capillary 
pressure on the effective stresses and thereby use Eqs (1.1) and (1.2) without change. 

Thus, (1.1)--(1.3) is replaced by (1.1), (1.2), (7.1) and (7.2). The differential inclusion (7.1), (7.2) 
distinguishes two subregions of space. In one (the seepage zone) p > 0, S = 1 and the initial model 
(1.1)-(1.3) remains true. In the other (the two-phase zone) 0 < S < 1,p = 0, and (1.3) is replaced by 
the relation 

0 / 3x(0 + m In S) = 0 (7.3) 

which defines the saturation there. 
On the boundary T between these zones the pressure and normal flow of the fluid must be continuous 

T: p=0 ,  Vm(S_-l)n x +kOp+/~n=O (7.4) 

Here n is the normal to T towards the seepage zone, the plus and minus subscripts denoting the seepage 
an two-phase zones respectively. 

Condition (7.4) can be simplified further in the case being considered here, because the boundary 
"t : x = x0(y ) corresponds to the monotonely increasing function x0. so that in (7.4) nx < 0. But since p 
is positive in the seepage zone, from the first condition of (7.4) the value of 0p+/& in (7.4) is non-negative. 
This is possible only when simultaneously 0p+/Ox = 0 and S_ = 1 on "t. The first of these conditions 
means that the problem of findingp and "t is independent of that of finding S as a classical variational 
inequality (see [13], for example) 

v00 
(7.5) 

Once the corresponding problem has been solved, the second condition together with (7.3) gives the 
saturation in the two-phase zone 

x> x0(Y): mlnS=O(x, y)-O(x o, y) (7.6) 
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Note that since 0 is small, the value orS is close to unity and In S in (7.6) can be replaced by (S - 1). 
We will briefly describe the main points of the numerical solution of problem (1.1), (1.2), (7.5). Grid 

methods are used. First, the region Im z > 0 is mapped into a unit semi-circle, in which we change to 
polar coordinates 0 < p < 1.0 < (p < n 

w = pei~,  z = - ( w  + w - 1 ) / 2  

The original problem in terms of the functions f,. = Imf, 0, ~ then takes the form 

-Aj5 = o (7.7) 

-A0+sL0=0,  0 ~  > ~ ,  

-A~ + L0 = 0 

1 ~ 

The boundary conditions can be written as follows 

Do ~.t;,. p= I : ~ = - 2 s i n g ,  ~p = r-~p, 

1 22 . l - p 2  ~ 1 + p 2  . 

(7.8) 

(7.9) 

O-~=0 (7.10) 
Op 

=--~ -T- ~ 2rp2 °~ 
(P 2 2:3~=+ - -  9=rf/, ~/~--0 (7.11) l - p  2 ~p' o~q) 

Note thatA does not appear here. It only arises in connection with Refand  can be found after solving 
problem (7.7)-(7.11), using relation (2.5) for instance. 

Equations (7.7)-(7.9) with boundary conditions (7.10) and (7.11) are solved by iteration. The 
computations at each step are as follows. Starting with the value of ~ found in the previous iteration 
on the boundary, ~ is found from Eq. (7.7) for the first pair of boundary conditions in (7.10) and (7.11). 
Then 0 is found from (7.8) for the second boundary conditions in (7.10) and (7.11). Finally, the value 
of ~ is refined by solving Eq. (7.9) for the last pair of boundary conditions (7.10) and (7.11). 

The first boundary condition in (7.11) and convective terms in (7.9) are approximated using central 
differences, the convective terms in (7.8) using differences against the flow, and the Laplace operator 
in the standard way throughout [14]. We use a uniform grid for ~0 in every case, and for p for moderate 
and large s. If s is small, there is a boundary layer at the origin of coordinates, so that the grid for p 
must be compressed accordingly and the coordinates of its nodes vary quadratically. 

The fact that the grid is uniform with respect to q~ means that we can findfi and ~ using the fast methods 
of expansion in a single series employing a discrete Fourier transformation [14]. The values of 0 are 
found by a method of point upper relaxation and their simultaneous projection onto an admissible set. 
It is unnecessary to find 0 exactly at each step. A better strategy is to perform a fixed number of iterations 
of the upper relaxation method on each step. 

Typically the calculations were carried out on a 64 x 64 grid, with 100 upper relaxation iterations at 
each step. In no case did the total number of steps exceed 20. 

The results were tested on a classical model--in this case it is obviously necessary only to exclude 
the projection when finding 0. The accuracy of the numerical solution can be monitored further by 
ensuring that Eqs (2.4) hold, since it is clear from physical considerations that they must be satisfied 
in the improved model also. It only needs to be taken into account that in p, q~ coordinates the free 
surface behind the roller corresponds to the segment (p = ~. In the given range of parameter values 
this condition was satisfied to within 10 -3 . 

The results confirm our expectation that the force characteristics of the process do not change 
significantly when allowance is made for the two-phase nature of the medium. This can be seen from 
the dashed curves in Fig. 4, which represent the distributions of effective normal stresses and the pressure 
of the fluid on the contact area obtained by the improved model with r = 0.3 and s = 1. They are very 
close to the corresponding solid curves for the classical model. The same was true of the other parameter 
values. The differences between the integral characteristics of the two models were also correspondingly 
small. In Fig. 6 the solid curves correspond to the classical model and the dashed curves to the improved 
model with r = 0.3. 
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Let us examine the position of the two-phase zone in more detail (the dashed curves in Fig. 5). It 
always lies inside the region of negative pressures of the corresponding classical problem, and also 
contracts towards the free surface behind the contact area as s increases, degenerating in the limit into 
the segment (1, oo) of the real axis. We can establish the position of the boundary of the two-phase zone 
in the other limiting case, s ~ 0, as follows. 

When s -- 0, as in the classical formulation, fi = -2p sin tO. From the relation between f/, 0 andp and 
Eqs (7.7) and (7.8), we conclude that the problem for the pressure takes the form 

• sin2(p hp -np-s--~=O, p~>O; p=l:~p=O; cp=O, n:p=O 

apart from higher-order small terms. The solution p of this problem is independent of p 

s j'sin2tO-(tp/tO,)sin2tp., 0 < ~ < ~0. (7.12) 
P=~LO, ~,<~o<~ 

Here tO. = 2.2467 is found as the root of the equation 2tO. = tg 2tO.. Thus, in the w plane the boundary 
7 is the straight line tO -- tO., corresponding in the z plane to the hyperbola 

X 2 s in  2 tO, _ y2  cos  2 (p, __ s in  2 (p, cos  2 tO, 

In particular, as s --, 0 the start of the two-phase zone in the contact area corresponds to the point 
with coordinate x. - -cos tO. -- 0.626. This is much nearer the outlet than in the classical model, for 
which the corresponding point x. = 0 was at the middle of the contact area. 

It should be noted that this solution is not uniformly valid with respect to z. It is invalid in the 
neighbourhood of an infinitely distant point, where the boundary layer gives rise to weak convection. 
We can determine the behaviour of 7 at large z and any velocities s by noting that the asymptotic 
dependence (3.9) still applies in the improved model, so that as z ~ oo the matching conditions on "t 
take the form 

qry ~ -q ry  ~0 = _ qr(x 2 _ y 2 )  = qr 
x=x0(y) :  0=- - -~z12  rrx 2 ' 3y x lz l  4 xx 2 (7.13) 

allowing for the fact that x0 "> y. For large Izl the equation for 0 in the seepage zone becomes the 
parabolic boundary-layer equation 

~0 ~20 
x < x o ( y ) : 2 S - ~ x =  ~y2 

We can place the beginning of the boundary layer at the point x = 0, taking x0(0) = 0, 0(0, y) = 0. 
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The problem obtained for 0 is self-similar. Its solution is sought in the form 

O =-~s x-3/200(~), ~ = -77 
Here the boundary 7 corresponds to the point { = ~. To find ~ and 00(~) we have 

~>~o: 0~+~Oo+300=0 (7.14) 

=~0: 0o =-~0, 0[=-1,  ~-->**: 00=0 (7.15) 

We will write the general solution of Eq. (7.14), taking into account the last condition in (7.15) in the 
form 

O 0 = C(~ 2 -1)exp(-~  2/2)  

The arbitrary constant C and the quantity ~ occurring here are determined by the first two boundary 
conditions of (7.15). For ~ in particular, we obtain ~ = ~/(1 + ~/(2)), so that as z ---> ~ the boundary 

is the parabola 

$ 2 
xo(Y ) = l+--+--+--+--+--+-~y 
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